Conclusion
Administration of Gln to the DSS-induced colitis mice led to a clearly reduction in oxidative stress-induced injury. The Gln is confirmed as inhibiting the PI3K/Akt signaling pathway activity.
Methods
Thirty mice were randomly assigned into control, model, LY294002 (PI3K/Akt inhibitor), Gln, Gln+LY294002 and 5-Aminosalicylic acid (5-ASA) groups. The mice in the experimental group drank 4% dextran sulfate sodium salt (DSS) for 7 consecutive days. The protective effect of Gln on oxidative stress was quantified by keeping colitis mice, involving Phosphatidylinositol-3-kinase (PI3K)/Protein kinase B (Akt)/mammalian target of Rapamycin (mTOR) signaling pathway, with different medications or distilled water through intragastric administration for 10 consecutive days.
Results
In vivo administration of Gln, LY294002 or 5-ASA was found to ameliorate the symptoms of colitis in mice, such as reduced growth, loose stools and stool bleeding; protected DSS-induced colitis mice from goblet cell loss, lymphocytosis, mucosal erosion, loss of crypts, and neutrophil infiltration; improved the activity of superoxide dismutase (SOD) and glutathione peroxidase (GSH-XP); decreased the content of malondialdehyde (MDA); and inhibited the activation of PI3K/Akt signaling pathway.
