γ-Glutamyl transferase 7 is a novel regulator of glioblastoma growth

γ-谷氨酰转移酶7是胶质母细胞瘤生长的新型调节剂

阅读:4
作者:Timothy T Bui, Ryan T Nitta, Suzana A Kahn, Seyed-Mostafa Razavi, Maya Agarwal, Parvir Aujla, Sharareh Gholamin, Lawrence Recht, Gordon Li

Background

Glioblastoma (GBM) is the most malignant primary brain tumor in adults, with a median survival time of one and a half years. Traditional treatments, including radiation, chemotherapy, and surgery, are not curative, making it imperative to find more effective treatments for this lethal disease. γ-Glutamyl transferase (GGT) is a family of enzymes that was shown to control crucial redox-sensitive functions and to regulate the balance between proliferation and apoptosis. GGT7 is a novel GGT family member that is highly expressed in brain and was previously shown to have decreased expression in gliomas. Since other members of the GGT family were found to be altered in a variety of cancers, we hypothesized that GGT7 could regulate GBM growth and formation.

Conclusion

Our study demonstrates that GGT7 is a novel player in GBM growth and that GGT7 can play a critical role in tumorigenesis by regulating anti-oxidative damage. Loss of GGT7 may increase the cellular ROS levels, inducing GBM occurrence and growth. Our findings suggest that GGT7 can be a promising biomarker and a potential therapeutic target for GBM.

Methods

To determine if GGT7 is involved in GBM tumorigenesis, we modulated GGT7 expression in two GBM cell lines (U87-MG and U138) and monitored changes in tumorigenicity in vitro and in vivo.

Results

We demonstrated for the first time that GBM patients with low GGT7 expression had a worse prognosis and that 87% (7/8) of primary GBM tissue samples showed a 2-fold decrease in GGT7 expression compared to normal brain samples. Exogenous expression of GGT7 resulted in a 2- to 3-fold reduction in proliferation and anchorage-independent growth under minimal growth conditions (1% serum). Decreasing GGT7 expression using either short interfering RNA or short hairpin RNA consistently increased proliferation 1.5- to 2-fold. In addition, intracranial injections of U87-MG cells with reduced GGT7 expression increased tumor growth in mice approximately 2-fold, and decreased mouse survival. To elucidate the mechanism by which GGT7 regulates GBM growth, we analyzed reactive oxygen species (ROS) levels in GBM cells with modulated GGT7 expression. We found that enhanced GGT7 expression reduced ROS levels by 11-33%.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。