The Role and Mechanism of Spinal NF-κB-CXCL1/CXCR2 in Rats with Nucleus Pulposus-induced Radicular Pain

脊髓NF-κB-CXCL1/CXCR2在髓核性根性痛大鼠中的作用及机制

阅读:5
作者:Fengjiao Gao, Ming Wei, Meiyue Wang, Yongting Yang, Xuan Duan, Lin Yang, Laibao Sun

Conclusions

We found that spinal NFκB is involved in NP-induced radicular pain in rats through the activation of CXCL1/CXCR2, enriching the mechanism of medullary-derived radicular pain and providing a possible new target and theoretical basis for the development of more effective anti-inflammatory and analgesic drugs for patients with chronic pain following LDH.

Methods

We established a rat model of autologous medullary nucleus transplantation. We observed and recorded the changes in 50% mechanical withdrawal threshold and thermal withdrawal latency before and after the administration of CXCL1-neutralizing antibodies, CXCR2 inhibitor, and NFκB inhibitor in each group of rats and evaluated the expression of NFκB, CXCL1, and CXCR2 in the spinal dorsal horn using immunofluorescence and Western blot. To compare differences between groups in behavioral testing, analysis of variance was employed. Dunnett's method was used to compare differences at different time points within a group and between different groups at the same time point. A comparison of the relative concentration of protein, relative concentration of mRNA, and semiquantitative data from immunofluorescence staining was conducted utilizing one-way ANOVA and Dunnett's pairwise comparison.

Objective

This study investigated the role and mechanism of spinal NFκB-CXCL1/CXCR2 in autologous nucleus pulposus-induced pain behavior in rats and to clarify the involvement and regulation of spinal NFκB as an upstream molecule of CXCL1 in autologous nucleus pulposus-induced radicular pain in rats. Summary of background data: The inflammatory response of nerve roots is an important mechanism for the occurrence of chronic pain. NFκB-CXCL1/CXCR2 pathway plays an important role in the development of radicular pain, but its regulatory mechanism in the model of radicular pain induced by autologous nucleus pulposus is still unclear. Materials and

Results

Autologous nucleus pulposus transplantation can induce radicular pain in rats and upregulate the expression of CXCL1, CXCR2, and NFκB in the spinal cord. CXCL1 is co-expressed with astrocytes, CXCR2 with neurons, and NFκB with both astrocytes and neurons. The application of CXCL1 neutralizing antibodies, CXCR2 inhibitors, and NFκB inhibitors can alleviate pain hypersensitivity induced by autologous nucleus pulposus transplantation in rats. Inhibitors of NFκB could downregulate the expression of CXCL1 and CXCR2. Conclusions: We found that spinal NFκB is involved in NP-induced radicular pain in rats through the activation of CXCL1/CXCR2, enriching the mechanism of medullary-derived radicular pain and providing a possible new target and theoretical basis for the development of more effective anti-inflammatory and analgesic drugs for patients with chronic pain following LDH.

特别声明

1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。

2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。

3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。

4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。