Real-time three-dimensional tracking of single vesicles reveals abnormal motion and pools of synaptic vesicles in neurons of Huntington's disease mice

单个囊泡的实时三维跟踪揭示了亨廷顿氏病小鼠神经元中的异常运动和突触囊泡池

阅读:10
作者:Sidong Chen, Hanna Yoo, Chun Hei Li, Chungwon Park, Gyunam Park, Li Yang Tan, Sangyong Jung, Hyokeun Park

Abstract

Although defective synaptic transmission was suggested to play a role in neurodegenerative diseases, the dynamics and vesicle pools of synaptic vesicles during neurodegeneration remain elusive. Here, we performed real-time three-dimensional tracking of single synaptic vesicles in cortical neurons from a mouse model of Huntington's disease (HD). Vesicles in HD neurons had a larger net displacement and radius of gyration compared with wild-type neurons. Vesicles with high release probability (Pr) were interspersed with low-Pr vesicles in HD neurons, whereas high-Pr vesicles were closer to fusion sites than low-Pr in wild-type neurons. Non-releasing vesicles in HD neurons had an abnormally high prevalence of irregular oscillatory motion. These abnormal dynamics and vesicle pools were rescued by overexpressing Rab11, and the abnormal irregular oscillatory motion was rescued by jasplakinolide. Our studies reveal the abnormal dynamics and pools of synaptic vesicles in the early stages of HD, suggesting a possible pathogenic mechanism of neurodegenerative diseases.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。