A Varroa destructor protein atlas reveals molecular underpinnings of developmental transitions and sexual differentiation

瓦螨蛋白图谱揭示了发育转变和性别分化的分子基础

阅读:7
作者:Alison McAfee, Queenie W T Chan, Jay Evans, Leonard J Foster

Abstract

Varroa destructor is the most economically damaging honey bee pest, weakening colonies by simultaneously parasitizing bees and transmitting harmful viruses. Despite these impacts on honey bee health, surprisingly little is known about its fundamental molecular biology. Here, we present a Varroa protein atlas crossing all major developmental stages (egg, protonymph, deutonymph, and adult) for both male and female mites as a web-based interactive tool (http://foster.nce.ubc.ca/varroa/index.html). We used intensity-based label-free quantitation to find 1,433 differentially expressed proteins across developmental stages. Enzymes for processing carbohydrates and amino acids were among many of these differences as well as proteins involved in cuticle formation. Lipid transport involving vitellogenin was the most significantly enriched biological process in the foundress (reproductive female) and young mites. In addition, we found that 101 proteins were sexually regulated and functional enrichment analysis suggests that chromatin remodeling may be a key feature of sex determination. In a proteogenomic effort, we identified 519 protein-coding regions, 301 of which were supported by two or more peptides and 169 of which were differentially expressed. Overall, this work provides a first-of-its-kind interrogation of the patterns of protein expression that govern the Varroa life cycle and the tools we have developed will support further research on this threatening honey bee pest.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。