ABCB11 accumulated in immature tertiary lymphoid structures participates in xenobiotic metabolic process and predicts resistance to PD-1/PD-L1 inhibitors in head and neck squamous cell carcinoma

ABCB11在未成熟的三级淋巴结构中积累,参与异生物质代谢过程,并可预测头颈部鳞状细胞癌对PD-1/PD-L1抑制剂的耐药性。

阅读:1
作者:Junya Ning ,Jie Hao ,Fengli Guo ,Xiukun Hou ,Lijuan Li ,Jinmiao Wang ,Shoujun Wang ,Ying Gao ,Xiangqian Zheng ,Ming Gao

Abstract

Head and neck squamous cell carcinomas (HNSCC) are at a high risk of recurrence and multimodal therapy have not significantly improved survival in recent decades. Although immune checkpoint inhibitors (ICIs) are effective in a small proportion of HNSCC patients, the majority do not respond. In this study, we for the first time revealed that xenobiotic metabolic process was significantly associated with resistance to programmed death-1 (PD-1)/programmed death-ligand 1 (PD-L1) inhibitors in HNSCC and found that ATP binding cassette subfamily B member 11 (ABCB11) accumulated in immature tertiary lymphoid structures (TLSs) predicted worse progression-free survival (PFS) and overall survival (OS) after PD-1/PD-L1 inhibitors therapy. Moreover, the expression of cytochrome P450 1A2 (CYP1A2), a cytochrome P450 (CYP) enzyme that participates in xenobiotic metabolic process, was significantly upregulated in CD45+ABCB11+ tumor-infiltrating lymphocytes (TILs) compared with CD45+ABCB11-TILs in HNSCC tissues. Whole slide scans of 110 HNSCC tissues with hematoxylin-eosin (HE) and multispectral immuno-fluorescent (mIF) staining revealed that ABCB11 had a high co-expression with CYP1A2 in immature TLSs, and colocalization of ABCB11 and CYP1A2 in immature TLs significantly associated with high infiltration of immunosuppressive T-regulatory (Treg). Our study revealed that ABCB11 accumulated in immature TLSs might upregulate CYP1A2 to mediate xenobiotic metabolic process, thus increase the immunosuppressive Treg infiltration, and induce resistance to PD-1/PD-L1 inhibitors in HNSCC.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。