5'-Methylthioadenosine strongly suppresses RANKL-induced osteoclast differentiation and function via inhibition of RANK-NFATc1 signalling pathways

5'-甲硫腺苷通过抑制 RANK-NFATc1 信号通路强烈抑制 RANKL 诱导的破骨细胞分化和功能

阅读:6
作者:Purithat Rattajak, Aratee Aroonkesorn, Carl Smythe, Rapepun Wititsuwannakul, Thanawat Pitakpornpreecha

Abstract

Excessive osteoclast-mediated bone resorption is a critical cause of osteoporosis affecting many aging people worldwide. 5'-Methylthioadenosine (MTA) is a natural sulfur-containing nucleoside normally produced in prokaryotes, plants, yeast, and higher eukaryotes via polyamine metabolism. MTA affects various physiological responses particularly the inflammatory pathway in both normal and cancerous cells and modulates the activation of nuclear factor-κB involved in the osteoclastogenesis signalling process. While several studies have reported that natural products possess anti-osteoclastogenesis phenolics and flavonoids, the effect of nucleoside derivatives on osteoclastogenesis remains limited. Therefore, this study aimed to explore the molecular mechanisms by which MTA affects pre-osteoclastic RAW 264.7 cells as a potential alleviation compound for inflammation-mediated bone loss. Osteoclasts were established by incubating RAW264.7 macrophage cells with receptor activator of nuclear factor kappa B ligand (RANKL) and macrophage colony-stimulating factor, the vital cytokines for activation of osteoclast differentiation. Cell viability was measured using MTT assays at 24, 48, and 72 h. The suppressive effect of MTA on RANKL-induced osteoclast differentiation and function was assessed using tartrate-resistant acid phosphatase (TRAP) analysis, qRT-PCR, and pit formation, Western blot, and immunofluorescence assays. MTA showed dose-dependent anti-osteoclastogenic activity by inhibiting TRAP-positive cell and pit formation and reducing essential digestive enzymes, including TRAP, cathepsin K, and matrix metallopeptidase 9. MTA was observed to suppress the osteoclast transduction pathway through (RANKL)-induced nuclear factor kappa-light-chain-enhancer of activated B cells (NFƘB); it attenuated NFƘB-P65 expression and down-regulated cFos proto-oncogene and nuclear factor of activated T cell c1 (NFATc1), the main regulators of osteoclasts. Moreover, the suppression of RANK (the initial receptor triggering several osteoclastogenic transduction pathways) was observed. Thus, this study highlights the potential of MTA as an effective therapeutic compound for restoring bone metabolic disease by inhibiting the RANK-NFATc1 signal pathway.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。