Defects in fatty acid amide hydrolase 2 in a male with neurologic and psychiatric symptoms

一名男性患有脂肪酸酰胺水解酶 2 缺陷,并出现神经和精神症状

阅读:4
作者:Sandra Sirrs, Clara D M van Karnebeek, Xiaoxue Peng, Casper Shyr, Maja Tarailo-Graovac, Rupasri Mandal, Daniel Testa, Devin Dubin, Gregory Carbonetti, Steven E Glynn, Bryan Sayson, Wendy P Robinson, Beomsoo Han, David Wishart, Colin J Ross, Wyeth W Wasserman, Trevor A Hurwitz, Graham Sinclair, Marti

Background

Fatty acid amide hydrolase 2 (FAAH2) is a hydrolase that mediates the degradation of endocannabinoids in man. Alterations in the endocannabinoid system are associated with a wide variety of neurologic and psychiatric conditions, but the phenotype and biochemical characterization of patients with genetic defects of FAAH2 activity have not previously been described. We report a male with autistic features with an onset before the age of 2 years who subsequently developed additional features including anxiety, pseudoseizures, ataxia, supranuclear gaze palsy, and isolated learning disabilities but was otherwise cognitively intact as an adult.

Conclusions

We propose that genetic alterations in FAAH2 activity contribute to neurologic and psychiatric disorders in humans.

Results

Whole exome sequencing identified a rare missense mutation in FAAH2, hg19: g.57475100G > T (c.1372G > T) resulting in an amino acid change (p.Ala458Ser), which was Sanger confirmed as maternally inherited and absent in his healthy brother. Alterations in lipid metabolism with abnormalities of the whole blood acyl carnitine profile were found. Biochemical and molecular modeling studies confirmed that the p.Ala458Ser mutation results in partial inactivation of FAAH2. Studies in patient derived fibroblasts confirmed a defect in FAAH2 activity resulting in altered levels of endocannabinoid metabolites. Conclusions: We propose that genetic alterations in FAAH2 activity contribute to neurologic and psychiatric disorders in humans.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。