Anti-Inflammatory Effects of Curvularin-Type Metabolites from a Marine-Derived Fungal Strain Penicillium sp. SF-5859 in Lipopolysaccharide-Induced RAW264.7 Macrophages

海洋真菌菌株青霉菌 SF-5859 的 Curvularin 型代谢物在脂多糖诱导的 RAW264.7 巨噬细胞中的抗炎作用

阅读:4
作者:Tran Minh Ha, Wonmin Ko, Seung Jun Lee, Youn-Chul Kim, Jae-Young Son, Jae Hak Sohn, Joung Han Yim, Hyuncheol Oh

Abstract

Chemical study on the extract of a marine-derived fungal strain Penicillium sp. SF-5859 yielded a new curvularin derivative (1), along with eight known curvularin-type polyketides (2-9). The structures of these metabolites (1-9) were established by comprehensive spectroscopic analyses, including 1D and 2D nuclear magnetic resonance (NMR) spectroscopy, and mass spectrometry (MS). In vitro anti-inflammatory effects of these metabolites were evaluated in lipopolysaccharide (LPS)-stimulated RAW264.7 macrophages. Among these metabolites, 3-9 were shown to strongly inhibit LPS-induced overproduction of nitric oxide (NO) and prostaglandin E&sub2; (PGE&sub2;) with IC50 values ranging from 1.9 μM to 18.1 μM, and from 2.8 μM to 18.7 μM, respectively. In the further evaluation of signal pathways involved in these effects, the most active compound, (10E,15S)-10,11-dehydrocurvularin (8) attenuated the expression of inducible NO synthase (iNOS) and cyclooxygenase-2 (COX-2) in LPS-stimulated RAW264.7 macrophages. Furthermore, compound 8 was shown to suppress the upregulation of pro-inflammatory mediators and cytokines via the inhibition of the nuclear factor-κB (NF-κB) signaling pathway, but not through the mitogen-activated protein kinase (MAPK) pathway. Based on the comparisons of the different magnitude of the anti-inflammatory effects of these structurally-related metabolites, it was suggested that the opening of the 12-membered lactone ring in curvularin-type metabolites and blocking the phenol functionality led to the significant decrease in their anti-inflammatory activity.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。