Targeting Polyamines Inhibits Coronavirus Infection by Reducing Cellular Attachment and Entry

靶向多胺可减少细胞附着和进入,从而抑制冠状病毒感染

阅读:5
作者:Mason R Firpo, Vincent Mastrodomenico, Grant M Hawkins, Matthieu Prot, Laura Levillayer, Tom Gallagher, Etienne Simon-Loriere, Bryan C Mounce

Abstract

Coronaviruses first garnered widespread attention in 2002 when the severe acute respiratory syndrome coronavirus (SARS-CoV) emerged from bats in China and rapidly spread in human populations. Since then, Middle East respiratory syndrome coronavirus (MERS-CoV) emerged and still actively infects humans. The recent SARS-CoV-2 outbreak and the resulting disease (coronavirus disease 2019, COVID19) have rapidly and catastrophically spread and highlighted significant limitations to our ability to control and treat infection. Thus, a basic understanding of entry and replication mechanisms of coronaviruses is necessary to rationally evaluate potential antivirals. Here, we show that polyamines, small metabolites synthesized in human cells, facilitate coronavirus replication and the depletion of polyamines with FDA-approved molecules significantly reduces coronavirus replication. We find that diverse coronaviruses, including endemic and epidemic coronaviruses, exhibit reduced attachment and entry into polyamine-depleted cells. We further demonstrate that several molecules targeting the polyamine biosynthetic pathway are antiviral in vitro. In sum, our data suggest that polyamines are critical to coronavirus replication and represent a highly promising drug target in the current and any future coronavirus outbreaks.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。