Atf3 deficiency promotes genome instability and spontaneous tumorigenesis in mice

Atf3 缺乏导致小鼠基因组不稳定和自发性肿瘤形成

阅读:5
作者:Z Wang, Y He, W Deng, L Lang, H Yang, B Jin, R Kolhe, H-F Ding, J Zhang, T Hai, C Yan

Abstract

Mice lacking genes involving in the DNA-damage response (DDR) are often tumor prone owing to genome instability caused by oncogenic challenges. Previous studies demonstrate that activating transcription factor 3 (ATF3), a common stress sensor, can activate the tumor suppressor p53 and regulate expression of p53 target genes upon DNA damage. However, whether ATF3 contributes to the maintenance of genome stability and tumor suppression remains unknown. Here we report that Atf3-deficient (Atf3-/-) mice developed spontaneous tumors, and died significantly earlier than wild-type (Atf3+/+) mice. Consistent with these results, Atf3-/- mouse embryonic fibroblasts (MEFs) had more aberrant chromosomes and micronuclei, and were genetically unstable. Whereas we demonstrated that ATF3 activated p53 and promoted its pro-apoptotic activity in mouse thymi and small intestines, the chromosomal instability caused by Atf3 deficiency was largely dependent on the regulation of p53 by ATF3. Interestingly, loss of Atf3 also promoted spontaneous tumorigenesis in Trp53+/- mice, but did not affect tumor formation in Trp53-/- mice. Our results thus provide the first genetic evidence linking ATF3 to the suppression of the early development of cancer, and underscore the importance of ATF3 in the maintenance of genome integrity.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。