Transcriptional memories mediate the plasticity of cold stress responses to enable morphological acclimation in Brachypodium distachyon

转录记忆介导冷应激反应的可塑性,使二穗短柄草实现形态适应

阅读:6
作者:Boris F Mayer, Jean-Benoit Charron

Abstract

Plants that successfully acclimate to stress can resume growth under stressful conditions. The grass Brachypodium distachyon can grow a cold-adaptive morphology during cold acclimation. Studies on transcriptional memory (TM) have revealed that plants can be primed for stress by adjusting their transcriptional responses, but the function of TM in stress acclimation is not well understood. We investigated the function of TM during cold acclimation in B. distachyon. Quantitative polymerase chain reaction (qPCR), RNA-seq and chromatin immunoprecipitation qPCR analyses were performed on plants exposed to repeated episodes of cold to characterize the presence and stability of TM during the stress and growth responses of cold acclimation. Transcriptional memory mainly dampened stress responses as growth resumed and as B. distachyon became habituated to cold stress. Although permanent on vernalization gene VRN1, TMs were short-term and reversible on cold-stress genes. Growing under cold conditions also coincided with the acquisition of new and targeted cold-induced transcriptional responses. Overall, TM provided plasticity to cold stress responses during cold acclimation in B. distachyon, leading to stress habituation, acquired stress responses, and resumed growth. Our study shows that chromatin-associated TMs are involved in tuning plant responses to environmental change and, as such, regulate both stress and developmental components that characterize cold-climate adaptation in B. distachyon.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。