RNA-Seq-based analysis of changes in Borrelia burgdorferi gene expression linked to pathogenicity

基于 RNA-Seq 的伯氏疏螺旋体基因表达变化与致病性的分析

阅读:5
作者:Qiong Wu, Guiquan Guan, Zhijie Liu, Youquan Li, Jianxun Luo, Hong Yin

Background

Lyme disease is a global public health problem caused by the spirochaete Borrelia burgdorferi. Our previous studies found differences in disease severity between B. burgdorferi B31- and B. garinii SZ-infected mice. We hypothesized that genes that are differentially expressed between Borrelia isolates encode bacterial factors that contribute to disease diversity.

Conclusions

The results support the hypothesis that global changes in gene expression underlie differences in Borrelia pathogenicity. The findings also provide an empirical basis for studying the mechanism of action of specific genes as well as their potential usefulness for the diagnosis and management of Lyme disease.

Methods

The present study used high-throughput sequencing technology to characterize and compare the transcriptional profiles of B. burgdorferi B31 and B. garinii SZ cultured in vitro. Real-time quantitative RT-PCR was used to validate selected data from RNA-seq experiments.

Results

A total of 731 genes were differentially expressed between B. burgdorferi B31 and B. garinii SZ isolates, including those encoding lipoproteins and purine transport proteins. The fold difference in expression for B. garinii SZ versus B. burgdorferi B31 ranged from 22.07 to 1.01. Expression of the OspA, OspB and DbpB genes were significantly lower in B. garinii SZ compared to B. burgdorferi B31. Conclusions: The results support the hypothesis that global changes in gene expression underlie differences in Borrelia pathogenicity. The findings also provide an empirical basis for studying the mechanism of action of specific genes as well as their potential usefulness for the diagnosis and management of Lyme disease.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。