Significance
Localized and controlled delivery systems for the sustained release of drugs are essential. Many strategies have been developed for this purpose, but most rely on degradation (and loss of material properties) for delivery. Here, we developed a bilayer delivery system (BiLDS) that decouples the physical properties of a scaffold from its delivery kinetics. For this, biodegradable PLGA microspheres were sequestered within a central pocket of a slowly degrading nanofibrous bilayer. Using this device, we show enhanced cell activity with FGF delivery from the BiLDS both in vitro and in vivo. These data support that BiLDS can localize sustained protein and biofactor delivery to a surgical site while also serving as a mechanical scaffold for tissue repair and regeneration.
Statement of significance
Localized and controlled delivery systems for the sustained release of drugs are essential. Many strategies have been developed for this purpose, but most rely on degradation (and loss of material properties) for delivery. Here, we developed a bilayer delivery system (BiLDS) that decouples the physical properties of a scaffold from its delivery kinetics. For this, biodegradable PLGA microspheres were sequestered within a central pocket of a slowly degrading nanofibrous bilayer. Using this device, we show enhanced cell activity with FGF delivery from the BiLDS both in vitro and in vivo. These data support that BiLDS can localize sustained protein and biofactor delivery to a surgical site while also serving as a mechanical scaffold for tissue repair and regeneration.
