Therapeutic Targeting of TAZ and YAP by Dimethyl Fumarate in Systemic Sclerosis Fibrosis

富马酸二甲酯对系统性硬化症纤维化中 TAZ 和 YAP 的治疗靶向性

阅读:4
作者:Tetsuo Toyama, Agnieszka P Looney, Brendon M Baker, Lukasz Stawski, Paul Haines, Robert Simms, Aleksander D Szymaniak, Xaralabos Varelas, Maria Trojanowska

Abstract

Systemic sclerosis (scleroderma, SSc) is a devastating fibrotic disease with few treatment options. Fumaric acid esters, including dimethyl fumarate (DMF, Tecfidera; Biogen, Cambridge, MA), have shown therapeutic effects in several disease models, prompting us to determine whether DMF is effective as a treatment for SSc dermal fibrosis. We found that DMF blocks the profibrotic effects of transforming growth factor-β (TGFβ) in SSc skin fibroblasts. Mechanistically, we found that DMF treatment reduced nuclear localization of transcriptional coactivator with PDZ binding motif (TAZ) and Yes-associated protein (YAP) proteins via inhibition of the phosphatidylinositol 3 kinase/protein kinase B (Akt) pathway. In addition, DMF abrogated TGFβ/Akt1 mediated inhibitory phosphorylation of glycogen kinase 3β (GSK3β) and a subsequent β-transducin repeat-containing proteins (βTRCP) mediated proteasomal degradation of TAZ, as well as a corresponding decrease of TAZ/YAP transcriptional targets. Depletion of TAZ/YAP recapitulated the antifibrotic effects of DMF. We also confirmed the increase of TAZ/YAP in skin biopsies from patients with diffuse SSc. We further showed that DMF significantly diminished nuclear TAZ/YAP localization in fibroblasts cultured on a stiff surface. Importantly, DMF prevented bleomycin-induced skin fibrosis in mice. Together, our work demonstrates a mechanism of the antifibrotic effect of DMF via inhibition of Akt1/GSK3β/TAZ/YAP signaling and confirms a critical role of TAZ/YAP in mediating the profibrotic responses in dermal fibroblasts. This study supports the use of DMF as a treatment for SSc dermal fibrosis.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。