Biphasic Roles of Clock Genes and Bone Morphogenetic Proteins in Gonadotropin Expression by Mouse Gonadotrope Cells

时钟基因和骨形态发生蛋白在小鼠促性腺激素细胞促性腺激素表达中的双相作用

阅读:6
作者:Yoshiaki Soejima, Nahoko Iwata, Yasuhiro Nakano, Koichiro Yamamoto, Atsuhito Suyama, Takahiro Nada, Fumio Otsuka

Abstract

Roles of Clock genes and the bone morphogenetic protein (BMP) system in the regulation of gonadotropin secretion by gonadotropin-releasing hormone (GnRH) were investigated using mouse gonadotropin LβT2 cells. It was found that luteinizing hormone (LH)β mRNA expression level in LβT2 cells changed gradually over time, with LHβ expression being suppressed in the early phase up to 12 h and then elevated in the late phase 24 h after GnRH stimulation. In addition, the mRNA expression levels of Clock genes, including Bmal1, Clock, Per2, and Cry1, also showed temporal changes mimicking the pattern of LHβ expression in the presence and absence of GnRH. Notably, the expression levels of Bmal1 and Clock showed strong positive correlations with LHβ mRNA expression levels. Moreover, a functional link of the ERK signaling of mitogen-activated protein kinases (MAPKs) in the suppression of LHβ mRNA expression, as well as Bmal1 and Clock mRNA expression by GnRH at the early phase, was revealed. Inhibition of Bmal1 and Clock expression using siRNA was involved in the reduction in LHβ mRNA levels in the late phase 24 h after GnRH stimulation. Furthermore, in the presence of BMP-6 and -7, late-phase Bmal1 and LHβ mRNA expression after GnRH stimulation was significantly attenuated. Collectively, the results indicated that LH expression in gonadotrope cells exhibits Bmal1/Clock-dependent fluctuations under the influence of GnRH and that the fluctuations are regulated by ERK and BMPs in the early and late stages, respectively, in a phase-dependent manner after GnRH stimulation.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。