Mutation in Osteoactivin Promotes Receptor Activator of NFκB Ligand (RANKL)-mediated Osteoclast Differentiation and Survival but Inhibits Osteoclast Function

骨激活素突变促进 NFκB 受体激活剂配体 (RANKL) 介导的破骨细胞分化和存活,但抑制破骨细胞功能

阅读:6
作者:Samir M Abdelmagid, Gregory R Sondag, Fouad M Moussa, Joyce Y Belcher, Bing Yu, Hilary Stinnett, Kimberly Novak, Thomas Mbimba, Matthew Khol, Kurt D Hankenson, Christopher Malcuit, Fayez F Safadi

Abstract

We previously reported on the importance of osteoactivin (OA/Gpnmb) in osteogenesis. In this study, we examined the role of OA in osteoclastogenesis, using mice with a nonsense mutation in the Gpnmb gene (D2J) and wild-type controls (D2J/Gpnmb(+)). In these D2J mice, micro-computed tomography and histomorphometric analyses revealed increased cortical thickness, whereas total porosity and eroded surface were significantly reduced in D2J mice compared with wild-type controls, and these results were corroborated by lower serum levels of CTX-1. Contrary to these observations and counterintuitively, temporal gene expression analyses supported up-regulated osteoclastogenesis in D2J mice and increased osteoclast differentiation rates ex vivo, marked by increased number and size. The finding that MAPK was activated in early differentiating and mature D2J osteoclasts and that survival of D2J osteoclasts was enhanced and mediated by activation of the AKT-GSK3β pathway supports this observation. Furthermore, this was abrogated by the addition of recombinant OA to cultures, which restored osteoclastogenesis to wild-type levels. Moreover, mix and match co-cultures demonstrated an induction of osteoclastogenesis in D2J osteoblasts co-cultured with osteoclasts of D2J or wild-type. Last, in functional osteo-assays, we show that bone resorption activity of D2J osteoclasts is dramatically reduced, and these osteoclasts present an abnormal ruffled border over the bone surface. Collectively, these data support a model whereby OA/Gpnmb acts as a negative regulator of osteoclast differentiation and survival but not function by inhibiting the ERK/AKT signaling pathways.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。