Pinocembrin alleviates the susceptibility to atrial fibrillation in isoproterenol-induced rats

松属素可降低异丙肾上腺素诱发大鼠心房颤动的易感性

阅读:4
作者:Zhangchi Liu, Xiaoli Chen, Tianxin Ye, Weiguo Wan, Yi Yu, Cui Zhang, Bo Yang

Background

Inflammation can contribute to the initiation and progression of atrial fibrillation (AF), and pinocembrin can suppress downstream inflammatory cytokine production by inhibiting the inflammation pathway. In our previous studies, pinocembrin was also beneficial in ameliorating cardiac arrhythmia in different models of rats, such as depression, myocardial infarction, and heart failure. This study aims to investigate the effect of pinocembrin on the susceptibility to AF in isoproterenol-induced rats.

Conclusions

Our study indicated that pinocembrin was beneficial to alleviate atrial electrical remodeling and fibrosis. Accompanied the downregulation of ion channels and upregulation of gap junction protein Cx40. Pinocembrin may produce these effects by inhibiting the NLRP3 pathway.

Methods

Rats were randomly divided into four groups. Pinocembrin was injected through the tail vein. Isoproterenol was treated by intraperitoneal injection for one week (5 mg/kg/day). We evaluated the susceptibility to AF by atrial electrophysiological experiments. Masson staining was used to evaluate the fibrosis area. The protein levels of connexin (Cx) 40, Cav1.2, Kv4.2, collagen I, collagen III, α-SMA, transforming growth factor (TGF)-β, NLRP3, caspase 1, and interleukin (IL)-1β were detected by western blot.

Results

Our data demonstrated that pinocembrin could prolong the atrial effective refractory period (ERP) and action potential duration (APD), and decrease AF inducibility. Isoproterenol increased the expression of Cav1.2 and Kv4.2 ion channels whereas pinocembrin could alleviate this change. Pinocembrin could reduce the fibrosis area, fibrosis-related protein collagen I, collagen III, α-SMA, and TGF-β and upregulate gap junction protein Cx40. In addition, pinocembrin reduced the expression of NLRP3, caspase 1, and IL-1β. Conclusions: Our study indicated that pinocembrin was beneficial to alleviate atrial electrical remodeling and fibrosis. Accompanied the downregulation of ion channels and upregulation of gap junction protein Cx40. Pinocembrin may produce these effects by inhibiting the NLRP3 pathway.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。