Functionalization of iron oxide magnetic nanoparticles with targeting ligands: their physicochemical properties and in vivo behavior

氧化铁磁性纳米粒子与靶向配体的功能化:其物理化学性质和体内行为

阅读:6
作者:Chen Fang, Omid Veiseh, Forrest Kievit, Narayan Bhattarai, Freddy Wang, Zach Stephen, Chun Li, Donghoon Lee, Richard G Ellenbogen, Miqin Zhang

Aim

To develop and evaluate two tumor-specific nanoprobes by functionalization of a polyethylene glycol-immobilized nanoparticle with arginine-glycine-aspartic acid (RGD) or chlorotoxin ligand that targets α(v)β(3) integrin and matrix metalloproteinase-2 receptors, respectively. Materials &

Conclusion

These findings revealed the influence of the targeting ligands on the intratumoral distribution of the ligand-enabled nanoprobes. With flexible surface chemistry, our nanoparticle platform can be used in a modular fashion to conjugate biomolecules for intended applications.

Discussion

Both nanoprobes were highly dispersive and exhibited excellent long-term stability in cell culture media. The RGD-conjugated nanoprobe displayed a strong initial accumulation near neovasculatures in tumors followed by quick clearance. Conversely, the chlorotoxin-enabled nanoprobe exhibited sustained accumulation throughout the tumor. Conclusion: These findings revealed the influence of the targeting ligands on the intratumoral distribution of the ligand-enabled nanoprobes. With flexible surface chemistry, our nanoparticle platform can be used in a modular fashion to conjugate biomolecules for intended applications.

Methods

The nanoprobes were made of iron oxide cores, biocompatible polymer coating, and surface-conjugated RGD or chlorotoxin peptide. The tumor-targeting specificity of the nanoprobes was evaluated both in vitro and in vivo.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。