Minocycline, a classic antibiotic, exerts psychotropic effects by normalizing microglial neuroinflammation-evoked tryptophan-kynurenine pathway dysregulation in chronically stressed male mice

米诺环素是一种经典抗生素,它通过使长期应激雄性小鼠的小胶质细胞神经炎症引起的色氨酸-犬尿氨酸通路失调正常化,发挥精神作用

阅读:5
作者:Dan Cheng, Zong-Shi Qin, Yu Zheng, Jun-Ya Xie, Sui-Sha Liang, Jia-Ling Zhang, Yi-Bin Feng, Zhang-Jin Zhang

Abstract

The dysregulation of tryptophan-kynurenine pathway (TKP) is extensively involved in the pathophysiology of Alzheimer's disease, depression, and neurodegenerative disorders. Minocycline, a classic antibiotic, may exert psychotropic effects associated with the modulation of TKP. In this study, we examined the effects of minocycline in improving behaviour and modulating TKP components in chronically stressed male mice. Following repeated treatment with 22.5 mg/kg and 45 mg/kg minocycline for 27 days, the stressed mice particularly with higher dose displayed significant improvement on cognitive impairment, depression- and anxiety-like behaviour. Minocycline suppressed stress-induced overexpression of pro-inflammatory cytokines and restored anti-inflammatory cytokines. Chronic stress dramatically suppressed blood and prefrontal cortical levels of the primary substrate tryptophan (TRP), the neuroprotective metabolite kynurenic acid (KYNA), and KYNA/KYN ratio, but increased the intermediate kynurenine (KYN), 3-hydroxykynurenine (3-HK), KYN/TRP ratio, and the neurotoxic metabolite quinolinic acid (QUIN). Minocycline partially or completely reversed changes in these components. Minocycline also inhibited stress-induced overexpression of QUIN-related enzymes, indoleamine 2, 3-dioxygenase 1(iDO-1), kynureninase (KYNU), kynurenine 3-monooxygenase (KMO), 3-hydroxyanthranilate 3,4-dioxygenase (3-HAO), but rescued the decreased expression of kynurenine aminotransferase (KAT) in brain regions. Behavioral improvements were correlated with multiple TKP metabolites and enzymes. These results suggest that the psychotropic effects of minocycline are mainly associated with the restoration of biodistribution of the primary substrate in the brain and normalization of neuroinflammation-evoked TKP dysregulation.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。