Abstract
Cerebral ischemic stroke is a devastating neurological disease with high rates of morbidity, disability, and mortality. Lentiviral-mediated mast cell-expressed membrane protein 1 (MCEMP1) has been shown to function in ischemic stroke. Hence, this study aims to explore the function of MCEMP1 specifically in angiogenesis, neuronal proliferation, and apoptosis in rats with cerebral ischemic stroke. Initially, stroke-related genes were obtained through microarray-based gene expression analysis, followed by the construction of a lentiviral vector for MCEMP1 shRNA and establishment of the middle cerebral artery occlusion model. After rats were transfected with MCEMP1 shRNA lentivirus, microvessel density (MVD), expression of MCEMP1, caspase-3, and vascular endothelial growth factor (VEGF), and neuronal proliferation and apoptosis were measured to explore the role of MCEMP1 in cerebral ischemic stroke. MCEMP1 was found to be highly expressed in rats with cerebral ischemic stroke. Silencing of MCEMP1 led to upregulation of VEGF, while downregulation of caspase-3, and resulted in the promotion of MVD in rats with ischemic stroke. Moreover, MCEMP1 silencing could increase Ki67 positive cells and reduce terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling positive cells in the marginal zone of cortical infarction in rats. Our study provides evidence that silenced MCEMP1 could enhance angiogenesis and suppress neuronal apoptosis in rats with cerebral ischemic stroke, highlighting that MCEMP1 silencing could serve as a therapeutic target for cerebral ischemic stroke treatment.
