CD8+ cells enhance resistance to pulmonary serotype 3 Streptococcus pneumoniae infection in mice

CD8+ 细胞增强小鼠对肺部血清型 3 型肺炎链球菌感染的抵抗力

阅读:5
作者:Sarah E Weber, Haijun Tian, Liise-anne Pirofski

Abstract

Despite the success of the pneumococcal conjugate vaccine, pneumococcal pneumonia remains a significant clinical problem, and there is still much to learn about natural resistance and cellular immunity to pneumococcus. We investigated the role of T lymphocytes in resistance to serotype (ST) 3 Streptococcus pneumoniae in an intranasal infection model in C57BL/6 (wild-type [Wt]) and CD8(+) (CD8(-/-))- and CD4(+) (MHC class II(-/-))-deficient mice. CD8(-/-) mice exhibited significantly more bacterial dissemination and lung inflammation and a significantly more lethal phenotype than Wt mice. However, there was no difference in the bacterial dissemination, lung inflammation, or survival of Wt and MHC class II(-/-) mice. Perforin (Pfn)(-/-) and IFN-γ(-/-) mice, which were used to dissect the role of CD8(+) T cells in our model, also exhibited a more lethal survival phenotype than Wt mice. Comparison of lung chemokine/cytokine levels by Luminex and cellular recruitment by FACS in Wt mice and knockout strains revealed that CD8(-/-) and IFN-γ(-/-) mice, which had the most lethal survival phenotype, had more CD4(+)IL-17(+) T (Th17) cells, IL-17, neutrophil chemoattractants, and lung neutrophils, and fewer regulatory T cells than Wt mice. CD4(+) T cell depletion improved the survival of ST-infected CD8(-/-) mice, and survival studies in Th17-deficient mice revealed that the Th17 response was dispensable for ST3 resistance in our model. Taken together, these findings demonstrate that CD8(+) cells are required, but CD4(+) T cells are dispensable for resistance to ST3 pneumonia in mice and suggest a previously unsuspected role for CD8(+) cells in modulating the inflammatory response to ST3.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。