Down-regulation of lncRNA UCA1 enhances radiosensitivity in prostate cancer by suppressing EIF4G1 expression via sponging miR-331-3p

lncRNA UCA1 下调通过海绵 miR-331-3p 抑制 EIF4G1 表达增强前列腺癌的放射敏感性

阅读:8
作者:Minhua Hu, Jincheng Yang

Background

We aimed to explore the role of long noncoding RNA urothelial carcinoma-associated 1 (lncRNA UCA1) and its underlying mechanism in the radioresistance of prostate cancer (PCa).

Conclusions

LncRNA UCA1 deletion suppressed the radioresistance to PCa by suppressing EIF4G1 expression via miR-331-3p. UCA1 acted as a potential regulator of radioresistance of PCa, providing a promising therapeutic target for PCa.

Methods

QRT-PCR was conducted to measure the expression of UCA1, microRNA-331-3p (miR-331-3p) and eukaryotic translation initiation factor 4 gamma 1 (EIF4G1) in PCa tissues and cells. The relative protein level was determined by western blot assay. Cell proliferation and apoptosis were detected by MTT, colony formation assay, and flow cytometry, respectively. The target interaction between miR-331-3p and UCA1 or EIF4G1 was predicted through bioinformatics analysis, and verified by dual-luciferase reporter gene assay system.

Results

The high levels of UCA1 and EIF4G1 as well as the low level of miR-331-3p were observed in PCa tissues and cell lines. UCA1 and EIF4G1 expression were significantly upregulated by Gy radiation treatement. UCA1 or EIF4G1 knockdown repressed cell growth and enhanced cell apoptosis in 22RV1 and DU145 cells under radiation. Moreover, overexpression of EIF4G1 abolished UCA1 knockdown-induced effect on 6 Gy irradiated PCa cells. UCA1 sponged miR-331-3p to regulate EIF4G1 expression. Conclusions: LncRNA UCA1 deletion suppressed the radioresistance to PCa by suppressing EIF4G1 expression via miR-331-3p. UCA1 acted as a potential regulator of radioresistance of PCa, providing a promising therapeutic target for PCa.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。