Chloride intracellular channel 4 participate in the protective effect of Ginkgolide B in MPP+ injured MN9D cells: insight from proteomic analysis

氯离子细胞内通道 4 参与银杏内酯 B 对 MPP+ 损伤的 MN9D 细胞的保护作用:蛋白质组学分析的见解

阅读:6
作者:Zili Feng, Zhibin Zhu, Wang Chen, Yu Bai, Daihua Hu, Jia Cheng

Background

Ginkgolide B (GB), the extract of G. biloba leaves, has been shown to be protective against many neurological disorders, including Parkinson's disease (PD). Efforts have been made to synthesized ginkgolides analogs and derivatives with more targeted and smaller molecular weight. In the present study, four GB derivatives (GBHC-1-GBHC-4) were synthesized, and their protective roles in N-methyl-4-phenylpyridinium (MPP +) injured MN9D dopaminergic neuronal cell line were evaluated. Also, cell response mechanisms upon these GB derivatives treatment were analyzed by iTRAQ proteomics.

Conclusions

Quantitative comparative proteomic analysis identified differentially expressed proteins associated with GB and GB derivatives. We further verified the expression of CLIC4 by western blotting and immunocytochemistry assay. This bio-information on the identified pathways and differentially expressed proteins such as CLIC4 provide more targeted directions for the synthesis of more effective and targeted GB derivatives for the treatment of neurological disorders.

Methods

MN9D cells were treated with MPP + to induce in vitro cell models of PD. Four GB derivatives (GBHC-1-GBHC-4) were synthesized, and their protective roles on cell viability and apoptosis in in vitro PD model cells were evaluated by CCK8 assay, fluorescence-activated cell sorting and DAPI staining, respectively. The proteomic profiles of MPP+ injured MN9D cells pretreated with or without GB and GB derivatives were detected using the isobaric tags for relative and absolute quantification (iTRAQ) labeling technique.

Results

Pretreatment with GBHC-1-GBHC-4 noticeably increased cell viability and attenuated cell apoptosis in MPP+ -injured MN9D cells. Using proteomic analysis, we identified differentially expressed proteins upon GB and GB derivatives treatment. Chloride intracellular channel 4 (CLIC4) and "protein processing in endoplasmic reticulum" pathways participated in the protective roles of GB and GBHC-4. GB and GBHC-4 pretreatment could significantly reverse MPP+ -induced CLIC4 expression and translocation from cytoplasm to nucleus of MN9D cells. Conclusions: Quantitative comparative proteomic analysis identified differentially expressed proteins associated with GB and GB derivatives. We further verified the expression of CLIC4 by western blotting and immunocytochemistry assay. This bio-information on the identified pathways and differentially expressed proteins such as CLIC4 provide more targeted directions for the synthesis of more effective and targeted GB derivatives for the treatment of neurological disorders.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。