Background
The transforming growth factor beta-1 (TGF β-1) cytokine exerts both pro-tumor and anti-tumor effects in carcinogenesis. An increasing body of literature suggests that TGF β-1 signaling outcome is partially dependent on the regulatory targets of downstream receptor-regulated Smad (R-Smad) proteins Smad2 and Smad3. However, the lack of Smad-specific antibodies for ChIP-seq hinders convenient identification of Smad-specific binding sites.
Conclusions
Our results suggests that deep learning approaches can be used to dissect binding site specificity of closely related transcription factors.
Results
In this study, we use localization and affinity purification (LAP) tags to identify Smad-specific binding sites in a cancer cell line. Using ChIP-seq data obtained from LAP-tagged Smad proteins, we develop a convolutional neural network with long-short term memory (CNN-LSTM) as a deep learning approach to classify a pool of Smad-bound sites as being Smad2- or Smad3-bound. Our data showed that this approach is able to accurately classify Smad2- versus Smad3-bound sites. We use our model to dissect the role of each R-Smad in the progression of breast cancer using a previously published dataset. Conclusions: Our results suggests that deep learning approaches can be used to dissect binding site specificity of closely related transcription factors.
