Applications and Limitations of Oxime-Linked "Split PROTACs"

肟连接“分裂 PROTAC”的应用和局限性

阅读:5
作者:Weijun Gui, Thomas Kodadek

Abstract

Proteolysis targeting chimeras are of keen interest as probe molecules and drug leads. Their activity is highly sensitive to the length and nature of the linker connecting the E3 Ubiquitin Ligase (E3 Ubl) and target protein (TP) ligands, which therefore requires tedious optimization. The creation of "split PROTACs" from E3 Ubl and TP ligands modified with residues suitable for them to couple when simply mixed together would allow various combinations to be assessed in a combinatorial fashion, thus greatly easing the workload relative to a one-by-one synthesis of many different PROTACs (proteolysis targeting chimeras). We explore oxime chemistry here for this purpose. We show that PROTAC assembly occurs efficiently when the components are mixed at a high concentration, then added to cells. However, in situ coupling of the TP and E3 Ubl ligands is inefficient when these units are added to cells at lower concentrations.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。