Nuclear Translocation of Argonaute 2 in Cytokine-Induced Senescence

细胞因子诱导的衰老中 Argonaute 2 的核易位

阅读:4
作者:Maximilian Rentschler, Yan Chen, Jana Pahl, Laura Soria-Martinez, Heidi Braumüller, Ellen Brenner, Oliver Bischof, Martin Röcken, Thomas Wieder

Aims

Cellular senescence, or permanent growth arrest, is known as an effective tumor suppressor mechanism that can be induced by different stressors, such as oncogenes, chemotherapeutics or cytokine cocktails. Previous studies demonstrated that the growth-repressing state of oncogene-induced senescent cells depends on argonaute protein 2 (Ago2)-mediated transcriptional gene silencing and Ago2/Rb corepression of E2F-dependent cell cycle genes. Cytokine-induced senescence (CIS) likewise depends on activation of the p16Ink4a/Rb pathway, and consecutive inactivation of the E2F family of transcription factors. In the present study, we therefore analyzed the role of Ago2 in CIS.

Background/aims

Cellular senescence, or permanent growth arrest, is known as an effective tumor suppressor mechanism that can be induced by different stressors, such as oncogenes, chemotherapeutics or cytokine cocktails. Previous studies demonstrated that the growth-repressing state of oncogene-induced senescent cells depends on argonaute protein 2 (Ago2)-mediated transcriptional gene silencing and Ago2/Rb corepression of E2F-dependent cell cycle genes. Cytokine-induced senescence (CIS) likewise depends on activation of the p16Ink4a/Rb pathway, and consecutive inactivation of the E2F family of transcription factors. In the present study, we therefore analyzed the role of Ago2 in CIS.

Conclusion

IFN-γ and TNF induce a stable cell cycle arrest of cancer cells that is accompanied by a fast nuclear Ago2 translocation and repression of Ago2-regulated cell cycle control genes. As Ago2 downregulation impairs cytokine-induced growth regulation, Ago2 may contribute to tissue homeostasis in human cancers.

Methods

Human cancer cell lines were treated with interferon-gamma (IFN-γ) and tumor necrosis factor (TNF) to induce senescence. Senescence was determined by growth assays and measurement of senescence-associated β-galactosidase (SA-β-gal) activity, Ago2 translocation by Ago2/ Ki67 immunofluorescence staining and western blot analysis, and gene transcription by quantitative polymerase chain reaction (qPCR).

Results

IFN-γ and TNF permanently stopped cell proliferation and time-dependently increased SA-β-gal activity. After 24 - 48 h of cytokine treatment, Ago2 translocated from the cytoplasm into the nucleus of Ki67-negative cells, an effect which was shown to be reversible. Importantly, the proinflammatory cytokine cocktail suppressed Ago2-regulated cell cycle control genes, and siRNA-mediated depletion of Ago2 interfered with cytokine-induced growth inhibition.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。