Inorganic arsenic activates reduced NADPH oxidase in human primary macrophages through a Rho kinase/p38 kinase pathway

无机砷通过 Rho 激酶/p38 激酶通路激活人类原代巨噬细胞中还原型 NADPH 氧化酶

阅读:5
作者:Anthony Lemarie, Emilie Bourdonnay, Claudie Morzadec, Olivier Fardel, Laurent Vernhet

Abstract

Inorganic arsenic is an immunotoxic environmental contaminant to which millions of humans are chronically exposed. We recently demonstrated that human primary macrophages constituted a critical target for arsenic trioxide (As(2)O(3)), an inorganic trivalent form. To specify the effects of arsenic on macrophage phenotype, we investigated in the present study whether As(2)O(3) could regulate the activity of NADPH oxidase, a major superoxide-generating enzymatic system in human phagocytes. Our results show that superoxide levels were significantly increased in a time-dependent manner in blood monocyte-derived macrophages treated with 1 muM As(2)O(3) for 72 h. Concomitantly, As(2)O(3) induced phosphorylation and membrane translocation of the NADPH oxidase subunit p47(phox) and it also increased translocation of Rac1 and p67(phox). Apocynin, a selective inhibitor of NADPH oxidases, prevented both p47(phox) translocation and superoxide production. NADPH oxidase activation was preceded by phosphorylation of p38-kinase in As(2)O(3)-treated macrophages. The p38-kinase inhibitor SB-203580 prevented phosphorylation and translocation of p47(phox) and subsequent superoxide production. Pretreatment of macrophages with the Rho-kinase inhibitor Y-27632 was found to mimic inhibitory effects of SB-203580 and to prevent As(2)O(3)-induced phosphorylation of p38 kinase. Treatment with As(2)O(3) also resulted in an increased secretion of the proinflammatory chemokine CCL18 that was fully inhibited by both apocynin and SB-203580. Taken together, our results demonstrate that As(2)O(3) induced a marked activation of NADPH oxidase in human macrophages, likely through stimulation of a Rho-kinase/p38-kinase pathway, and which may contribute to some of the deleterious effects of inorganic arsenic on macrophage phenotype.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。