Thymosin‑β 4 induces angiogenesis in critical limb ischemia mice via regulating Notch/NF‑κB pathway

胸腺肽β4通过调控Notch/NF-κB通路诱导严重肢体缺血小鼠血管生成

阅读:7
作者:Shumin Lv, Hongwen Cai, Yifei Xu, Jin Dai, Xiqing Rong, Lanzhi Zheng

Abstract

Thymosin‑β 4 (Tβ4) has been reported to exert a pro‑angogenic effect on endothelial cells. However, little is known on the role and underlying mechanisms of Tβ4 on critical limb ischemia (CLI). The present study aimed therefore to investigate the mechanisms and pro‑angiogenic effects of Tβ4 in CLI mice. Tβ4 overexpression lentiviral vector was first transfected into HUVEC and CLI mice model, and inhibitors of Notch pathway (DAPT) and NF‑κB pathway (BMS) were also applied to HUVEC and CLI mice. Subsequently, MTT, tube formation and wound healing assays were used to determine the cell viability, angiogenesis and migratory ablity of HUVEC, respectively. Western blotting, reverse transcription, quantitative PCR, immunofluorescence and immunohistochemistry were used to detect the expression of the angiogenesis‑related factors angiopoietin‑2 (Ang2), TEK receptor tyrosine kinase 2 (tie2), vascular endothelial growth factor A (VEGFA), CD31 and α‑smooth muscle actin (α‑SMA) and the Notch/NF‑κB pathways‑related factors NOTCH1 intracellular domain (N1ICD), Notch receptor 3 (Notch3), NF‑κB and p65 in HUVEC or CLI mice muscle tissues. The results demonstrated that Tβ4 not only enhanced the cell viability, angiogenesis and migratory ability of HUVEC but also promoted the expression of Ang2, tie2, VEGFA, N1ICD, Notch3, NF‑κB, and phosphorylated (p)‑p65 in HUVEC. In addition, Tβ4 promoted the expression of CD31, α‑SMA Ang2, tie2, VEGFA, N1ICD and p‑p65 in CLI mice muscle tissues. Treatment with DAPT and BMS had opposite effects of Tβ4, whereas Tβ4 reversed the effect of DAPT and BMS. The findings from the present study suggested that Tβ4 may promote angiogenesis in CLI mice via regulation of Notch/NF‑κB pathways.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。