miR‑483‑3p promotes the osteogenesis of human osteoblasts by targeting Dikkopf 2 (DKK2) and the Wnt signaling pathway

miR-483-3p 通过靶向 Dikkopf 2 (DKK2) 和 Wnt 信号通路促进人类成骨细胞的成骨作用

阅读:5
作者:Bin Zhou, Kun Peng, Guoqiang Wang, Weihua Chen, Ping Liu, Fei Chen, Yijun Kang

Abstract

Osteoporosis is a systemic metabolic bone disease during which bone mass decreases and bone quality is reduced. Maintaining the bone formation capacity of osteoblasts is crucial for the treatment of osteoporosis. In the present study, bioinformatics analysis was performed on online microarray expression profiles to identify miRNA(s) related to osteoblast proliferation and bone marrow‑derived mesenchymal stem cell (BMSC) osteogenic differentiation. The specific effects of candidate miRNAs on cell proliferation, osteogenic differentiation and Wnt signaling‑related factors were examined. As regards the downstream mechanisms, online tools were employed to predict the downstream targets of candidate miRNAs and the predicted miRNA‑mRNA binding was verified. Finally, the dynamic effects of miRNAs and mRNAs were examined. The results revealed that miR‑483‑3p expression was decreased in bone tissue samples from patients with osteoporosis. In miR‑483‑3p‑overexpressing human osteoblasts, cell viability, DNA synthesis capacity and osteogenesis were promoted, and the protein levels of Wnt1, β‑catenin and cyclin D1 were increased. However, the protein receptor activator of nuclear factor kappa‑Β ligand (RANKL)/osteoprotegerin (OPG) ratio and cell apoptotic rate were decreased. The Wnt signaling, antagonist Dikkopf 2 (DKK2), was targeted and negatively regulated by miR‑483‑3p. DKK2 knockdown exerted similar effects as miR‑483‑3p overexpression, while DKK2 overexpression inhibited cell viability, DNA synthesis capacity and osteogenesis. DKK2 overexpression also decreased the Wnt1, β‑catenin, and cyclin D1 protein levels, whereas it promoted the the RANKL/OPG ratio and the apoptosis of human osteoblasts. DKK2 overexpression reversed the functions of miR‑483‑3p overexpression. On the whole, the findings of the present study demonstrate that the miR‑483‑3p/DKK2 axis modulates the bone formation process by affecting osteoblast proliferation, pre‑osteoblast differentiation into mature osteoblasts and new bone matrix formation.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。