HSP70-Hrd1 axis precludes the oncorepressor potential of N-terminal misfolded Blimp-1s in lymphoma cells

HSP70-Hrd1 轴阻止淋巴瘤细胞中 N 端错误折叠的 Blimp-1 的癌抑制潜力

阅读:4
作者:Wen-Fang Wang, Li Yan, Zhao Liu, Lan-Xuan Liu, Jian Lin, Zhi-Yin Liu, Xiong-Ping Chen, Wu Zhang, Zi-Zhen Xu, Ting Shi, Jun-Min Li, Yi-Lei Zhao, Guoyu Meng, Yi Xia, Jian-Yong Li, Jiang Zhu

Abstract

B lymphocyte-induced maturation protein-1 (Blimp-1) ensures B-cell differentiation into the plasma cell stage, and its instability constitutes a crucial oncogenic element in certain aggressive cases of activated B cell-like diffuse large B-cell lymphoma (ABC-DLBCL). However, the underlying degradation mechanisms and their possible therapeutic relevance remain unexplored. Here, we show that N-terminal misfolding mutations in ABC-DLBCL render Blimp-1 protein susceptible to proteasome-mediated degradation but spare its transcription-regulating activity. Mechanistically, whereas wild-type Blimp-1 metabolism is triggered in the nucleus through PML-mediated sumoylation, the degradation of lymphoma-associated mutants is accelerated by subversion of this pathway to Hrd1-mediated cytoplasmic sequestration and ubiquitination. Screening experiments identifies the heat shock protein 70 (HSP70) that selects Blimp-1 mutants for Hrd1 association, and HSP70 inhibition restores their nuclear accumulation and oncorepressor activities without disrupting normal B-cell maturation. Therefore, HSP70-Hrd1 axis represents a potential therapeutic target for restoring the oncorepressor activity of unstable lymphoma-associated Blimp-1 mutants.The transcriptional repressor Blimp-1 has an important role in B-cell differentiation. Here the authors show that lymphoma-associated Blimp-1 mutants are selectively recognized by HSP70-Hrd1, which leads to their accelerated degradation and propose HSP70 inhibition as a therapeutic approach for certain lymphomas.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。