Short-Term Sleep Fragmentation Dysregulates Autophagy in a Brain Region-Specific Manner

短期睡眠碎片化以大脑区域特异性的方式调节自噬

阅读:7
作者:Yan Cheng, Woong-Ki Kim, Laurie L Wellman, Larry D Sanford, Ming-Lei Guo

Abstract

In this study, we investigated autophagy, glial activation status, and corticotropin releasing factor (CRF) signaling in the brains of mice after 5 days of sleep fragmentation (SF). Three different brain regions including the striatum, hippocampus, and frontal cortex were selected for examination based on roles in sleep regulation and sensitivity to sleep disruption. For autophagy, we monitored the levels of various autophagic induction markers including beclin1, LC3II, and p62 as well as the levels of lysosomal associated membrane protein 1 and 2 (LAMP1/2) and the transcription factor EB (TFEB) which are critical for lysosome function and autophagy maturation stage. For the status of microglia and astrocytes, we determined the levels of Iba1 and GFAP in these brain regions. We also measured the levels of CRF and its cognate receptors 1 and 2 (CRFR1/2). Our results showed that 5 days of SF dysregulated autophagy in the striatum and hippocampus but not in the frontal cortex. Additionally, 5 days of SF activated microglia in the striatum but not in the hippocampus or frontal cortex. In the striatum, CRFR2 but not CRFR1 was significantly increased in SF-experienced mice. CRF did not alter its mRNA levels in any of the three brain regions assessed. Our findings revealed that autophagy processes are sensitive to short-term SF in a region-specific manner and suggest that autophagy dysregulation may be a primary initiator for brain changes and functional impairments in the context of sleep disturbances and disorders.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。