Downregulation of PARP1 transcription by promoter-associated E2F4-RBL2-HDAC1-BRM complex contributes to repression of pluripotency stem cell factors in human monocytes

启动子相关 E2F4-RBL2-HDAC1-BRM 复合物下调 PARP1 转录,导致人类单核细胞中多能性干细胞因子受到抑制

阅读:6
作者:Ewelina Wiśnik, Tomasz Płoszaj, Agnieszka Robaszkiewicz

Abstract

Differentiation of certain cell types is followed by a downregulation of PARP1 expression. We show that the reduction in the abundance of PARP1 in hematopoietic progenitor cells and monocytes is tightly controlled by the cell cycle. The differentiation-associated cell cycle exit induces E2F1 replacement with E2F4 at the PARP1 promoter and the assembly of an E2F4-RBL2-HDAC1-BRM(SWI/SNF) repressor complex which deacetylates nucleosomes and compacts chromatin. In G1 arrested cells, PARP1 transcription is reduced by the recruitment of E2F1-RB1-HDAC1-EZH2(PRC2)-BRM/BRG1(SWI/SNF), which additionally trimethylates H3K27 and causes an even higher increase in nucleosome density. The re-establishment of an active chromatin structure by treating post-mitotic monocytes with the HDAC inhibitor and G1 arrested cells with a combination of HDAC and EZH2 inhibitors restores PARP1 expression completely but does not affect the interaction between the components of the repressor complex with chromatin. This suggests that RB1 and RBL2, as well as PRC2, SWI/SNF and HDAC1, do not interfere with the transcription machinery. Interestingly, reinstatement of PARP1 expression by the silencing of RBL2 or by the inhibition of HDACs in monocytes and by transfection with the PARP1 expression vector in differentiated THP-1 cells substantially increased transcription of pluripotency stem cell factors such as POU5F1, SOX2 and NANOG.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。