Neutrophil Elastase Damages the Pulmonary Endothelial Glycocalyx in Lipopolysaccharide-Induced Experimental Endotoxemia

中性粒细胞弹性蛋白酶在脂多糖诱发的实验性内毒血症中损害肺内皮糖萼

阅读:5
作者:Kodai Suzuki, Hideshi Okada, Genzou Takemura, Chihiro Takada, Ayumi Kuroda, Hirohisa Yano, Ryogen Zaikokuji, Kentaro Morishita, Hiroyuki Tomita, Kazumasa Oda, Saori Matsuo, Akihiro Uchida, Tetsuya Fukuta, So Sampei, Nagisa Miyazaki, Tomonori Kawaguchi, Takatomo Watanabe, Takahiro Yoshida, Hiroaki Us

Abstract

Neutrophil elastase (NE) is necessary for effective sterilization of phagocytosed bacterial and fungal pathogens; however, NE increases alveolocapillary permeability and induces proinflammatory cytokine production in sepsis-induced acute respiratory distress syndrome. Under septic conditions, the pulmonary endothelial glycocalyx covering on the healthy endothelium surface is injured, but the contribution of NE to this injury remains unknown. Our aim was to examine whether NE-induced pulmonary endothelial injury is associated with endotoxemia. Lipopolysaccharide (LPS; 20 mg/kg) was injected intraperitoneally into 9- to 12-week-old granulocyte colony-stimulating factor knockout (G-CSFKO) mice, which harbor few neutrophils, and littermate control mice; in a second assay, mice were injected with the NE-inhibitor sivelestat (0.2 mg/kg) at 3, 6, 9, and 12 hours after LPS administration. Subsequently, vascular endothelial injury was evaluated through ultrastructural analysis. At 48 hours after LPS injection, survival rate was more than threefold higher among G-CSFKO than control mice, and degradation of both thrombomodulin and syndecan-1 was markedly attenuated in G-CSFKO compared with control mice. Ultrastructural analysis revealed attenuated vascular endothelial injury and clear preservation of the endothelial glycocalyx in G-CSFKO mice. Moreover, after LPS exposure, survival rate was approximately ninefold higher among sivelestat-injected mice than control mice, and sivelestat treatment potently preserved vascular endothelial structures and the endothelial glycocalyx. In conclusion, NE is associated with pulmonary endothelial injury under LPS-induced endotoxemic conditions.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。