Biophysical and molecular characterization of a novel de novo KCNJ2 mutation associated with Andersen-Tawil syndrome and catecholaminergic polymorphic ventricular tachycardia mimicry

与 Andersen-Tawil 综合征和儿茶酚胺能多形性室性心动过速拟态相关的新型新生 KCNJ2 突变的生物物理和分子特征

阅读:5
作者:Hector Barajas-Martinez, Dan Hu, Gustavo Ontiveros, Gabriel Caceres, Mayurika Desai, Elena Burashnikov, Jorge Scaglione, Charles Antzelevitch

Background

Mutations in KCNJ2, the gene encoding the human inward rectifier potassium channel Kir2.1 (IK1 or IKir2.1), have been identified in Andersen-Tawil syndrome. Andersen-Tawil syndrome is a multisystem inherited disease exhibiting periodic paralysis, cardiac arrhythmias, and dysmorphic features at times mimicking catecholaminergic polymorphic ventricular tachycardia.

Conclusions

We report a novel de novo KCNJ2 mutation associated with classic phenotypic features of Andersen-Tawil syndrome and catecholaminergic polymorphic ventricular tachycardia mimicry. The R260P mutation produces a strong dominant negative effect leading to marked suppression of IK1 secondary to a trafficking defect.

Results

Our proband displayed dysmorphic features including micrognathia, clinodactyly, and syndactyly and exhibited multiform extrasystoles and bidirectional ventricular tachycardia both at rest and during exercise testing. The patient's symptoms continued after administration of nadolol but subsided after treatment with flecainide. Molecular genetic screening revealed a novel heterozygous mutation (c.779G>C/p.R260P) in KCNJ2. Whole-cell patch-clamp studies conducted in TSA201 cells transfected with wild-type human KCNJ2 cDNA (WT-KCNJ2) yielded robust IKir2.1 but no measurable current in cells expressing the R260P mutant. Coexpression of WT and R260P-KCNJ2 (heterozygous expression) yielded a markedly reduced inward IKir2.1 compared with WT alone (-36.5±9.8 pA/pF versus -143.5±11.4 pA/pF, n=8 for both, P<0.001, respectively, at -90 mV), indicating a strong dominant negative effect of the mutant. The outward component of IKir2.1 measured at -50 mV was also markedly reduced with the heterozygous expression versus WT (0.52±5.5 pA/pF versus 23.4±6.7 pA/pF, n=8 for both, P<0.001, respectively). Immunocytochemical analysis indicates that impaired trafficking of R260P-KCNJ2 channels. Conclusions: We report a novel de novo KCNJ2 mutation associated with classic phenotypic features of Andersen-Tawil syndrome and catecholaminergic polymorphic ventricular tachycardia mimicry. The R260P mutation produces a strong dominant negative effect leading to marked suppression of IK1 secondary to a trafficking defect.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。