Cx43 suppresses mammary tumor metastasis to the lung in a Cx43 mutant mouse model of human disease

Cx43 抑制人类疾病 Cx43 突变小鼠模型中的乳腺肿瘤向肺转移

阅读:5
作者:I Plante, M K G Stewart, K Barr, A L Allan, D W Laird

Abstract

Gap junctions, the channels formed by the connexin (Cx) family of proteins, are responsible for direct intercellular communication. Although connexins are considered as tumor suppressors, their overall role in cancer onset, progression and metastasis is somewhat controversial. This study uses a novel Cx43 mutant mouse model (G60S mice) and cross-breeding strategies to determine the role of Cx43 in all stages of breast tumorigenesis. G60S mice were cross-bred with ErbB2 overexpressing mice, and spontaneous and 7,12-dimethylbenz[α]anthracene (DMBA)-induced tumor development was evaluated. Mice were killed when tumors reached ∼1 cm(3) or when mice showed signs of critical illness. In both spontaneous and DMBA studies, onset of palpable tumors was delayed in G60S mice compared with mice in control groups. Moreover, while tumors from control mice reached the size threshold, most DMBA-exposed Cx43 mutant mice were killed prematurely because of labored breathing, independent of the presence of a palpable tumor. Reduced Cx43 levels in Cx43 mutant mice were accompanied by extensive mammary gland hyperplasia. Lung histology revealed that all Cx43 mutant mice exhibited mammaglobin-positive mammary gland metastases to the lung, and the number of metastases was increased by threefold in Cx43 mutant mice on treatment with DMBA. Thus, while reduced levels of Cx43 delayed the onset of palpable tumors, normal Cx43 levels inhibited mammary gland tumor metastasis to the lungs. Understanding the mechanisms of how Cx43, which is expressed primarily in myoepithelial cells, inhibits mammary gland tumor metastasis is critical as Cx43 is assessed as a candidate for therapeutic intervention.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。