Inhibition of the MET Receptor Tyrosine Kinase as a Novel Therapeutic Strategy in Medulloblastoma

抑制 MET 受体酪氨酸激酶作为髓母细胞瘤的新治疗策略

阅读:4
作者:Paul N Kongkham, Sara Onvani, Christian A Smith, James T Rutka

Abstract

Medulloblastoma is the most common pediatric posterior fossa malignancy, with a 5-year overall survival of only 60% and many survivors experiencing treatment-related morbidity secondary to current therapeutic regimens. With an improved understanding of the molecular basis for this disease, the opportunity to develop novel treatments with more tolerable toxicity profiles that target key molecular pathways, now exists. Recently, the hepatocyte growth factor (HGF)/MET signaling pathway has been implicated in medulloblastoma pathogenesis. Several therapeutic strategies targeting this pathway exist, including small molecule inhibitor therapy against the MET receptor tyrosine kinase. We examined the in vitro efficacy of targeting the MET receptor using the highly specific small molecule inhibitor PHA665752 as a novel treatment strategy in medulloblastoma. MET inhibition using PHA665752 was effective at reducing the proliferative capacity of the D283, ONS76, and MED8A medulloblastoma cell lines as assessed by MTS assay. Furthermore, PHA665752 treatment reduced D283 and ONS76 cell motility and impaired the growth of D283 cells in soft agar. Pretreatment of D283, ONS76, and MED8A cells with PHA665752 blocked exogenous recombinant human HGF-induced up-regulation of the downstream RAS/mitogen-activated protein kinase signaling pathway in D283, ONS76 and MED8A cell lines. Similarly, PHA665752 prevented HGF-induced phosphatidylinositol 3-kinase/AKT signaling in ONS76 and MED8A cells. These results highlight the efficacy of targeting the MET receptor tyrosine kinase therapeutically in medulloblastoma and provide support for further preclinical testing of small molecule inhibitors targeting the MET receptor in medulloblastoma.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。