Protein profiling of human breast tumor cells identifies novel biomarkers associated with molecular subtypes

人类乳腺肿瘤细胞的蛋白质分析可识别与分子亚型相关的新型生物标志物

阅读:8
作者:Anthony Gonçalves, Emmanuelle Charafe-Jauffret, François Bertucci, Stéphane Audebert, Yves Toiron, Benjamin Esterni, Florence Monville, Carole Tarpin, Jocelyne Jacquemier, Gilles Houvenaeghel, Christian Chabannon, Jean-Marc Extra, Patrice Viens, Jean-Paul Borg, Daniel Birnbaum

Abstract

Molecular subtypes of breast cancer with relevant biological and clinical features have been defined recently, notably ERBB2-overexpressing, basal-like, and luminal-like subtypes. To investigate the ability of mass spectrometry-based proteomics technologies to analyze the molecular complexity of human breast cancer, we performed a SELDI-TOF MS-based protein profiling of human breast cell lines (BCLs). Triton-soluble proteins from 27 BCLs were incubated with ProteinChip arrays and subjected to SELDI analysis. Unsupervised global hierarchical clustering spontaneously discriminated two groups of BCLs corresponding to "luminal-like" cell lines and to "basal-like" cell lines, respectively. These groups of BCLs were also different in terms of estrogen receptor status as well as expression of epidermal growth factor receptor and other basal markers. Supervised analysis revealed various protein biomarkers with differential expression in basal-like versus luminal-like cell lines. We identified two of them as a carboxyl terminus-truncated form of ubiquitin and S100A9. In a small series of frozen human breast tumors, we confirmed that carboxyl terminus-truncated ubiquitin is observed in primary breast samples, and our results suggest its higher expression in luminal-like tumors. S100A9 up-regulation was found as part of the transcriptionally defined basal-like cluster in DNA microarrays analysis of human tumors. S100A9 association with basal subtypes as well as its poor prognosis value was demonstrated on a series of 547 tumor samples from early breast cancer deposited in a tissue microarray. Our study shows the potential of integrated genomics and proteomics profiling to improve molecular knowledge of complex tumor phenotypes and identify biomarkers with valuable diagnostic or prognostic values.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。