Exploring the role of copine 1 in human colorectal cancer: investigating its association with tumorigenesis and metastasis

探索 copine 1 在人类结直肠癌中的作用:研究其与肿瘤发生和转移的关系

阅读:24
作者:Jin-Kwon Lee, Seung-Jun Lee, Young-Sool Hah, Yeong-Ho Ji, Young-Tae Ju, Young-Joon Lee, Chi-Young Jeong, Ju-Yeon Kim, Ji-Ho Park, Jae-Myung Kim, Jin-Kyu Cho, Han-Gil Kim, Seung-Jin Kwag

Conclusion

CPNE1 plays a crucial role in promoting tumorigenesis and metastasis in human CRC. By regulating the cell cycle and EMT, CPNE1 influences critical cellular processes at the membrane-cytoplasm interface. These results provide valuable insights into the potential development of novel therapeutic strategies for CRC targeting CPNE1.

Methods

We conducted clinicopathological analysis and functional studies to explore the impact of CPNE1 in human CRC. We examined the expression levels of CPNE1 in CRC patients and correlated it with invasive depth, lymph node metastasis, distant metastasis, lymphatic invasion, and TNM stage. Additionally, we performed experiments to assess the functional consequences of CPNE1 knockdown in CRC cells, including proliferation, colony formation, migration, invasion, and the expression of key regulators involved in the cell cycle and epithelial-mesenchymal transition (EMT). Furthermore, we evaluated the effects of CPNE1 knockdown on tumor growth using a xenograft mouse model.

Purpose

This study aimed to investigate the potential role of copine-1 (CPNE1), a calcium-dependent membrane-binding protein encoded by the CPNE1 gene, in colorectal cancer (CRC). Despite previous research on the involvement of copine family members in various solid tumors, the specific role of CPNE1 in CRC remains poorly understood.

Results

High expression of CPNE1 was significantly associated with advanced tumor features in CRC patients. CPNE1 knockdown in CRC cells led to impaired abilities in proliferation, colony formation, migration, and invasion. Furthermore, CPNE1 silencing resulted in the suppression of protein expression related to the cell cycle and EMT. In the xenograft mouse model, CPNE1 knockdown inhibited tumor growth.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。