Exploring the role of copine 1 in human colorectal cancer: investigating its association with tumorigenesis and metastasis

探索 copine 1 在人类结直肠癌中的作用:研究其与肿瘤发生和转移的关系

阅读:11
作者:Jin-Kwon Lee, Seung-Jun Lee, Young-Sool Hah, Yeong-Ho Ji, Young-Tae Ju, Young-Joon Lee, Chi-Young Jeong, Ju-Yeon Kim, Ji-Ho Park, Jae-Myung Kim, Jin-Kyu Cho, Han-Gil Kim, Seung-Jin Kwag

Conclusion

CPNE1 plays a crucial role in promoting tumorigenesis and metastasis in human CRC. By regulating the cell cycle and EMT, CPNE1 influences critical cellular processes at the membrane-cytoplasm interface. These results provide valuable insights into the potential development of novel therapeutic strategies for CRC targeting CPNE1.

Methods

We conducted clinicopathological analysis and functional studies to explore the impact of CPNE1 in human CRC. We examined the expression levels of CPNE1 in CRC patients and correlated it with invasive depth, lymph node metastasis, distant metastasis, lymphatic invasion, and TNM stage. Additionally, we performed experiments to assess the functional consequences of CPNE1 knockdown in CRC cells, including proliferation, colony formation, migration, invasion, and the expression of key regulators involved in the cell cycle and epithelial-mesenchymal transition (EMT). Furthermore, we evaluated the effects of CPNE1 knockdown on tumor growth using a xenograft mouse model.

Purpose

This study aimed to investigate the potential role of copine-1 (CPNE1), a calcium-dependent membrane-binding protein encoded by the CPNE1 gene, in colorectal cancer (CRC). Despite previous research on the involvement of copine family members in various solid tumors, the specific role of CPNE1 in CRC remains poorly understood.

Results

High expression of CPNE1 was significantly associated with advanced tumor features in CRC patients. CPNE1 knockdown in CRC cells led to impaired abilities in proliferation, colony formation, migration, and invasion. Furthermore, CPNE1 silencing resulted in the suppression of protein expression related to the cell cycle and EMT. In the xenograft mouse model, CPNE1 knockdown inhibited tumor growth.

特别声明

1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。

2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。

3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。

4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。