Gating-related molecular motions in the extracellular domain of the IKs channel: implications for IKs channelopathy

IKs 通道胞外域中门控相关分子运动:对 IKs 通道病的影响

阅读:8
作者:Yu Hong Wang, Min Jiang, Xu Lin Xu, Kai-Ling Hsu, Mei Zhang, Gea-Ny Tseng

Abstract

Cardiac slow delayed rectifier (I(Ks)) channel complex consists of KCNQ1 channel and KCNE1 auxiliary subunits. The extracellular juxtamembranous region of KCNE1 is an unstructured loop that contacts multiple KCNQ1 positions in a gating-state-dependent manner. Congenital arrhythmia-related mutations have been identified in the extracellular S1-S2 linker of KCNQ1. These mutations manifest abnormal phenotypes only when coexpressed with KCNE1, pointing to the importance of proper KCNQ1/KCNE1 interactions here in I(Ks) channel function. We investigate the interactions between the KCNE1 loop (positions 36-47) and KCNQ1 S1-S2 linker (positions 140-148) by means of disulfide trapping and voltage clamp techniques. During transitions among the resting-state conformations, KCNE1 positions 36-43 make contacts with KCNQ1 positions 144, 145, and 147 in a parallel fashion. During conformational changes in the activated state, KCNE1 position 40 can make contacts with all three KCNQ1 positions, while the neighboring KCNE1 positions (36, 38, 39, and 41) can make contact with KCNQ1 position 147. Furthermore, KCNQ1 positions 143 and 146 are high-impact positions that cannot tolerate cysteine substitution. To maintain the proper I(Ks) channel function, position 143 requires a small side chain with a hydroxyl group, and position 146 requires a negatively charged side chain. These data and the proposed molecular motions provide insights into the mechanisms by which mutations in the extracellular juxtamembranous region of the I(Ks) channel impair its function.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。