Tobacco-Derived and Tobacco-Free Nicotine cause differential inflammatory cell influx and MMP9 in mouse lung

烟草衍生和无烟草尼古丁导致小鼠肺中炎症细胞流入和 MMP9 差异

阅读:7
作者:Thomas Lamb, Gagandeep Kaur, Irfan Rahman

Abstract

Electronic nicotine delivery systems (ENDS) or electronic cigarettes (e-cigarettes) have propylene glycol (PG) and vegetable glycerin (VG) as humectants, flavoring chemicals, and nicotine. Nicotine naturally occurs in two isomers R- and S-nicotine, with both tobacco-derived nicotine (TDN) composed of S-nicotine and synthetic nicotine (TFN) composed of a racemic mixture of R- and S-nicotine. Currently there is limited knowledge of the potential differences in the toxicity of TFN vs TDN. We hypothesized that exposure of TFN salts to C57BL/6J mice will result in a differential response in inflammation and lung protease and antiprotease imbalance compared to TDN salts exposed mice. We studied the toxicological impact of these isomers by exposing mice to air, PG/VG, PG/VG with TFN salts, or PG/VG with TDN salts by nose-only exposure and measured the cytokine levels in BALF and lung homogenate along with MMP protein abundance in the lungs of exposed mice. Exposure to the humectants, PG/VG, used in e-cigarettes alone was able to increase cytokine levels-IL-6, KC, and MCP-1 in BALF and KC levels in lung homogenate. Further, it showed differential responses on exposure to PG/VG with TDN salts and PG/VG with TFN salts since PG/VG with TDN salts did not alter the cytokine levels in lung homogenate while PG/VG with TFN salts resulted in an increase in KC levels. PG/VG with TDN salts increased the levels of MMP9 protein abundance in female exposed mice, while PG/VG with TFN salts did not alter MMP9 levels in female mice. The metabolism of nicotine or the clearance of cotinine from TFN may differ from the metabolism of nicotine or the clearance of cotinine from TDN. Thus exposure of humectants alone to induce an inflammatory response while PG/VG with TFN salts and PG/VG with TDN salts may differentially alter inflammatory responses and lung proteases in acute exposures. These data suggest the harmful effects of synthetic/natural nicotine and PG/VG and potential toxicological risk for users.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。