Analysis of CRSsNP Proteome Using a Highly Multiplexed Approach in Nasal Mucus

使用高度多路复用方法分析鼻粘液中的 CRSsNP 蛋白质组

阅读:7
作者:Vanessa-Vivien Pesold, Olaf Wendler, Lisa Morgenthaler, Franziska Gröhn, Sarina K Mueller

Background

Chronic rhinosinusitis without nasal polyps (CRSsNP) represents a phenotype of CRS, whose immunological mechanisms are still unclear. So far there are neither suitable biomarkers to determine the course of the disease nor an individual therapy.

Conclusion

Proteomic analysis of CRSsNP and control mucus has confirmed known and revealed novel disease-associated proteins that could potentially serve as a new biosignature for CRSsNP. Analysis of the associated pathways will specify endotypes of CRSsNP and will lead to an improved understanding of the pathophysiology of CRSsNP. Furthermore, our data contribute to the development of a reproducible, non-invasive, and quantitative "liquid biopsy" for rhinosinusitis.

Methods

A highly-multiplexed proteomic array consisting of antibodies against 2000 proteins was used to identify proteins that are differentially expressed in the nasal mucus of the CRSsNP and control groups (n = 7 per group). The proteins identified to be most differentially expressed were validated in matched nasal mucus samples using western blots and enzyme-linked immunosorbent assay (ELISA). Validation was also done in a second cohort using western blots (CRSsNP n = 25, control n = 23) and ELISA (n = 30 per group). Additionally, immunohistochemistry in CRSsNP and control tissue samples was performed to characterize the selected proteins further.

Objective

The purpose of this study was to characterize the CRSsNP endotype by identifying and validating non-invasive proteomic biomarkers.

Results

Out of the 2000 proteins examined, 7 from the most differentially expressed proteins were chosen to be validated. The validation results showed that 4 proteins were significantly upregulated in CRSsNP mucus, including macrophage inflammatory protein-1beta (MIP-1β), resistin, high mobility group box 1 (HMGB1), and forkhead box protein 3 (FOXP3). Cartilage acidic protein 1 (CRTAC1) was not significantly upregulated. Two proteins were significantly downregulated including scavenger receptor class F member 2 (SCARF2) and P-selectin. All proteins selected are mainly associated with inflammation, cell proliferation/differentiation, apoptosis and cell-cell or cell-matrix interaction.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。