Nanoenabled Disruption of Multiple Barriers in Antigen Cross-Presentation of Dendritic Cells via Calcium Interference for Enhanced Chemo-Immunotherapy

通过钙干扰纳米技术破坏树突状细胞抗原交叉呈递中的多重屏障,从而增强化学免疫疗法

阅读:4
作者:Jingyi An, Kaixiang Zhang, Binghua Wang, Sixuan Wu, Yifei Wang, Hongling Zhang, Zhenzhong Zhang, Junjie Liu, Jinjin Shi

Abstract

Chemo-immunotherapy holds the advantage of specific antitumor effects by activating T cell immune response. However, the efficiency of chemo-immunotherapy is restricted to the insufficient antigen presentation of dendritic cells (DCs) in the tumor immunosuppression microenvironment. Here, we rationally designed a simple yet versatile calcium ion nanogenerator to disrupt the autophagy inhibition condition within DCs, enrich damage-associated molecular patterns (DAMPs), and attenuate acidity in the tumor microenvironment. After chemotherapy, honeycomb calcium carbonate (CaCO3) nanoparticles (OVA@CaCO3, denoted as HOCN, ovalbumin (OVA) acted as skeleton) could preferentially accumulate in the tumor and display a series of benefits for disrupting multiple barriers in antigen cross-presentation of DCs: (i) recovering cell viability of DCs by HOCN-induced tumor acidity attenuating; (ii) disrupting the autophagy inhibition condition in DCs by generating Ca2+ in cells; (iii) improving maturation of DCs by Ca2+ overloading-mediated enhanced DAMP release from tumor cells. In addition, HOCN can also disrupt the immunosuppressive microenvironment by reducing the infiltration of immunosuppressive cells and factors. We believe regulation of the intratumoral Ca2+ offers an alternative strategy for improving cancer chemo-immunotherapy.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。