Light quality regulates plant biomass and fruit quality through a photoreceptor-dependent HY5-LHC/CYCB module in tomato

光质通过番茄中光感受器依赖的 HY5-LHC/CYCB 模块调节植物生物量和果实品质

阅读:7
作者:Jiarong Yan, Juan Liu, Shengdie Yang, Chenghao Jiang, Yanan Liu, Nan Zhang, Xin Sun, Ying Zhang, Kangyou Zhu, Yinxia Peng, Xin Bu, Xiujie Wang, Golam Jalal Ahammed, Sida Meng, Changhua Tan, Yufeng Liu, Zhouping Sun, Mingfang Qi, Feng Wang, Tianlai Li

Abstract

Increasing photosynthesis and light capture offers possibilities for improving crop yield and provides a sustainable way to meet the increasing global demand for food. However, the poor light transmittance of transparent plastic films and shade avoidance at high planting density seriously reduce photosynthesis and alter fruit quality in vegetable crops, and therefore it is important to investigate the mechanisms of light signaling regulation of photosynthesis and metabolism in tomato (Solanum lycopersicum). Here, a combination of red, blue, and white (R1W1B0.5) light promoted the accumulation of chlorophyll, carotenoid, and anthocyanin, and enhanced photosynthesis and electron transport rates by increasing the density of active reaction centers and the expression of the genes LIGHT-HARVESTING COMPLEX B (SlLHCB) and A (SlLHCA), resulting in increased plant biomass. In addition, R1W1B0.5 light induced carotenoid accumulation and fruit ripening by decreasing the expression of LYCOPENE β-CYCLASE (SlCYCB). Disruption of SlCYCB largely induced fruit lycopene accumulation, and reduced chlorophyll content and photosynthesis in leaves under red, blue, and white light. Molecular studies showed that ELONGATED HYPOCOTYL 5 (SlHY5) directly activated SlCYCB, SlLHCB, and SlLHCA expression to enhance chlorophyll accumulation and photosynthesis. Furthermore, R1W1B0.5 light-induced chlorophyll accumulation, photosynthesis, and SlHY5 expression were largely decreased in the slphyb1cry1 mutant. Collectively, R1W1B0.5 light noticeably promoted photosynthesis, biomass, and fruit quality through the photoreceptor (SlPHYB1 and SlCRY1)-SlHY5-SlLHCA/B/SlCYCB module in tomato. Thus, the manipulation of light environments in protected agriculture is a crucial tool to regulate the two vital agronomic traits related to crop production efficiency and fruit nutritional quality in tomato.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。