A Monochromatically Excitable Green-Red Dual-Fluorophore Fusion Incorporating a New Large Stokes Shift Fluorescent Protein

单色激发绿红双荧光团融合,结合新型大斯托克斯位移荧光蛋白

阅读:8
作者:J Obinna Ejike, Mayuri Sadoine, Yi Shen, Yuuma Ishikawa, Erdem Sunal, Sebastian Hänsch, Anna B Hamacher, Wolf B Frommer, Michael M Wudick, Robert E Campbell, Thomas J Kleist

Abstract

Genetically encoded sensors enable quantitative imaging of analytes in live cells. Sensors are commonly constructed by combining ligand-binding domains with one or more sensitized fluorescent protein (FP) domains. Sensors based on a single FP can be susceptible to artifacts caused by changes in sensor levels or distribution in vivo. To develop intensiometric sensors with the capacity for ratiometric quantification, dual-FP Matryoshka sensors were generated by using a single cassette with a large Stokes shift (LSS) reference FP nested within the reporter FP (cpEGFP). Here, we present a genetically encoded calcium sensor that employs green apple (GA) Matryoshka technology by incorporating a newly designed red LSSmApple fluorophore. LSSmApple matures faster and provides an optimized excitation spectrum overlap with cpEGFP, allowing for monochromatic coexcitation with blue light. The LSS of LSSmApple results in improved emission spectrum separation from cpEGFP, thereby minimizing fluorophore bleed-through and facilitating imaging using standard dichroic and red FP (RFP) emission filters. We developed an image analysis pipeline for yeast (Saccharomyces cerevisiae) timelapse imaging that utilizes LSSmApple to segment and track cells for high-throughput quantitative analysis. In summary, we engineered a new FP, constructed a genetically encoded calcium indicator (GA-MatryoshCaMP6s), and performed calcium imaging in yeast as a demonstration.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。