A method for estimating intracellular ion concentration using optical nanosensors and ratiometric imaging

利用光学纳米传感器和比率成像估计细胞内离子浓度的方法

阅读:8
作者:Guoxin Rong, Eric H Kim, Kira E Poskanzer, Heather A Clark

Abstract

Optical nanoparticle (NP)-based sensors have been widely implemented as tools for detection of targeted ions and biomolecules. The NP sensing platform offer a modular design that can incorporate different sensing components for greater target specificity and the ability to tune the dynamic range, as well as encapsulation of multiple dyes to generate a ratiometric signal with varying spectra. Despite these advantages, demonstrating quantitative ion imaging for intracellular measurement still possess a major challenge. Here, we describe fundamentals that enable intracellular validation of this approach using ion-selective nanosensors for investigating calcium (Ca2+) as a model ion. While conventional indicators can improve individual aspects of indicator performance such as Kd, wavelength, and ratiometric measurements, the use of NP sensors can achieve combined benefits of addressing these issues simultaneously. The nanosensor incorporates highly calcium-selective ionophores and two fluorescence indicators that act as signal transducers to facilitate quantitative ratiometric imaging. For intracellular Ca2+ application, the sensors are fine-tuned to physiological sensing range, and live-cell imaging and quantification are demonstrated in HeLa cells loaded with nanosensors and their responsiveness to carbachol-evoked store release (~400 nM). The current nanosensor design thus provides a promising sensing platform for real-time detection and optical determination of intracellular ions.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。