Effects of the Structure of Benzenesulfonate-Based Draw Solutes on the Forward Osmosis Process

苯磺酸盐基吸引溶质的结构对正向渗透过程的影响

阅读:7
作者:DaEun Yang, Yeonsu Cho, Hyo Kang

Abstract

A series of phosphonium-based ionic liquids (ILs) based on benzenesulfonate derivatives (tetrabutylphosphonium benzenesulfonate ([TBP][BS]), tetrabutylphosphonium 4-methylbenzenesulfonate ([TBP][MBS]), tetrabutylphosphonium 2,4-dimethylbenzenesulfonate ([TBP][DMBS]), and tetrabutylphosphonium 2,4,6-trimethylbenzenesulfonate ([TBP][TMBS])) were synthesized via anion exchange with tetrabutylphosphonium bromide ([TBP][Br]). Then, we characterized the ILs and investigated their suitability as draw solutes for forward osmosis (FO), focusing on their thermoresponsive properties, conductivities, and osmotic pressures. We found that aqueous [TBP][BS] was not thermoresponsive, but 20 wt% aqueous [TBP][MBS], [TBP][DMBS], and [TBP][TMBS] had lower critical solution temperatures (LCSTs) of approximately 41, 25, and 21 °C, respectively, enabling their easy recovery using waste heat. Based on these findings, 20 wt% aqueous [TBP][DMBS] was tested for its FO performance, and the water and reverse solute fluxes were found to be approximately 9.29 LMH and 1.37 gMH, respectively, in the active layer facing the draw solution (AL-DS) mode and 4.64 LMH and 0.37 gMH, respectively, in the active layer facing the feed solution (AL-FS) mode. Thus, these tetrabutylphosphonium benzenesulfonate-based LCST-type ILs are suitable for drawing solutes for FO process.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。