The in vivo gene expression signature of oxidative stress

氧化应激的体内基因表达特征

阅读:5
作者:Eun-Soo Han, Florian L Muller, Viviana I Pérez, Wenbo Qi, Huiyun Liang, Liang Xi, Chunxiao Fu, Erin Doyle, Morgen Hickey, John Cornell, Charles J Epstein, L Jackson Roberts, Holly Van Remmen, Arlan Richardson

Abstract

How higher organisms respond to elevated oxidative stress in vivo is poorly understood. Therefore, we measured oxidative stress parameters and gene expression alterations (Affymetrix arrays) in the liver caused by elevated reactive oxygen species induced in vivo by diquat or by genetic ablation of the major antioxidant enzymes CuZn-superoxide dismutase (Sod1) and glutathione peroxidase-1 (Gpx1). Diquat (50 mg/kg) treatment resulted in a significant increase in oxidative damage within 3-6 h in wild-type mice without any lethality. In contrast, treatment of Sod1(-/-) or Gpx1(-/-) mice with a similar concentration of diquat resulted in a significant increase in oxidative damage within an hour of treatment and was lethal, i.e., these mice are extremely sensitive to the oxidative stress generated by diquat. The expression response to elevated oxidative stress in vivo does not involve an upregulation of classic antioxidant genes, although long-term oxidative stress in Sod1(-/-) mice leads to a significant upregulation of thiol antioxidants (e.g., Mt1, Srxn1, Gclc, Txnrd1), which appears to be mediated by the redox-sensitive transcription factor Nrf2. The main finding of our study is that the common response to elevated oxidative stress with diquat treatment in wild-type, Gpx1(-/-), and Sod1(-/-) mice and in untreated Sod1(-/-) mice is an upregulation of p53 target genes (p21, Gdf15, Plk3, Atf3, Trp53inp1, Ddit4, Gadd45a, Btg2, Ndrg1). A retrospective comparison with previous studies shows that induction of these p53 target genes is a conserved expression response to oxidative stress, in vivo and in vitro, in different species and different cells/organs.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。