C-Methylation of S-adenosyl-L-Methionine Occurs Prior to Cyclopropanation in the Biosynthesis of 1-Amino-2-Methylcyclopropanecarboxylic Acid (Norcoronamic Acid) in a Bacterium

在细菌中 1-氨基-2-甲基环丙烷羧酸(Norcoronamic Acid)的生物合成过程中,S-腺苷酸-L-蛋氨酸的 C-甲基化发生在环丙烷化之前

阅读:5
作者:Chitose Maruyama, Yukiko Chinone, Shusuke Sato, Fumitaka Kudo, Kosuke Ohsawa, Junya Kubota, Junko Hashimoto, Ikuko Kozone, Takayuki Doi, Kazuo Shin-Ya, Tadashi Eguchi, Yoshimitsu Hamano

Abstract

Many pharmacologically important peptides are bacterial or fungal in origin and contain nonproteinogenic amino acid (NPA) building blocks. Recently, it was reported that, in bacteria, a cyclopropane-containing NPA 1-aminocyclopropanecarboxylic acid (ACC) is produced from the L-methionine moiety of S-adenosyl-L-methionine (SAM) by non-canonical ACC-forming enzymes. On the other hand, it has been suggested that a monomethylated ACC analogue, 2-methyl-ACC (MeACC), is derived from L-valine. Therefore, we have investigated the MeACC biosynthesis by identifying a gene cluster containing bacterial MeACC synthase genes. In this gene cluster, we identified two genes, orf29 and orf30, which encode a cobalamin (B12)-dependent radical SAM methyltransferase and a bacterial ACC synthase, respectively, and were found to be involved in the MeACC biosynthesis. In vitro analysis using their recombinant enzymes (rOrf29 and rOrf30) further revealed that the ACC structure of MeACC was derived from the L-methionine moiety of SAM, rather than L-valine. In addition, rOrf29 was found to catalyze the C-methylation of the L-methionine moiety of SAM. The resulting methylated derivative of SAM was then converted into MeACC by rOrf30. Thus, we demonstrate that C-methylation of SAM occurs prior to cyclopropanation in the biosynthesis of a bacterial MeACC (norcoronamic acid).

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。