CLP1 founder mutation links tRNA splicing and maturation to cerebellar development and neurodegeneration

CLP1 创始突变将 tRNA 剪接和成熟与小脑发育和神经退行性联系起来

阅读:5
作者:Ashleigh E Schaffer, Veerle R C Eggens, Ahmet Okay Caglayan, Miriam S Reuter, Eric Scott, Nicole G Coufal, Jennifer L Silhavy, Yuanchao Xue, Hulya Kayserili, Katsuhito Yasuno, Rasim Ozgur Rosti, Mostafa Abdellateef, Caner Caglar, Paul R Kasher, J Leonie Cazemier, Marian A Weterman, Vincent Cantagrel

Abstract

Neurodegenerative diseases can occur so early as to affect neurodevelopment. From a cohort of more than 2,000 consanguineous families with childhood neurological disease, we identified a founder mutation in four independent pedigrees in cleavage and polyadenylation factor I subunit 1 (CLP1). CLP1 is a multifunctional kinase implicated in tRNA, mRNA, and siRNA maturation. Kinase activity of the CLP1 mutant protein was defective, and the tRNA endonuclease complex (TSEN) was destabilized, resulting in impaired pre-tRNA cleavage. Germline clp1 null zebrafish showed cerebellar neurodegeneration that was rescued by wild-type, but not mutant, human CLP1 expression. Patient-derived induced neurons displayed both depletion of mature tRNAs and accumulation of unspliced pre-tRNAs. Transfection of partially processed tRNA fragments into patient cells exacerbated an oxidative stress-induced reduction in cell survival. Our data link tRNA maturation to neuronal development and neurodegeneration through defective CLP1 function in humans.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。